Course Type	Course Code	Name of the Course	L	Т	P	Credits
DE	NCSD510	OPTIMIZATION TECHNIQUES	3	0	0	3

Course Objective

At the end of the course student will be able to

- Understand the need of optimization methods
- Get a broad view of the various applications of optimization methods used in engineering

Learning Outcomes

After successful completion of the course, student will be able to

- Understand importance of optimization of industrial process management Apply basic concepts of mathematics to formulate an optimization problem.
- Analyse and appreciate variety of performance measures for various optimization problems

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1	Introduction: General statement of optimization problem, Classification of optimization Problems.	2	Understanding the basics of optimization techniques
	Classical Optimization Techniques: singlevariable and multivariable optimization.	4	Understanding the basics of single/multi-variable optimization techniques and network analysis
	Network models: Network definition, minimal spanning tree algorithm, shortest route problem, shortest route algorithm, maximal flow model, enumeration of cuts, maximal flow algorithm, CPM, PERT.	4	Learning about various network model.
	Linear programming (LP): Formulation and graphic solution Models of mathematical operations research, art of modeling, construction of the LP model, graphical LP solution. The Simplex method: Standard LP form, basic solution, The Simplex method, the Mmethod, the two-phase method, degeneracy, alternative optimal solution, unbounded solution, infeasible solution	4	Learning about linear programming.
	Genetic algorithms: representation of design variables, objective function and constraints.	4	Understanding Genetic algorithm.
	Transportation, assignment models: Definition of the transportation model, the transportation algorithm, definition of the assignment problem, the Hungarian method.	4	Understanding various transportation and assignment problems and its solutions.
7	Particle Swarm Optimization, Jaya algorithm, TLBO	4	Understanding the advanced optimization techniques
	Chemical reaction optimization (CRO): Main algorithm, basic components, issues, Simulated Annealing	3	Understanding the CRO
	Neural network based optimization	3	Understanding the Neural network based optimization techniques
10	Most recent optimization techniques such as Gravitational Search.	3	Understanding the Gravitational Search method.
1	Practical and computational aspects of optimization.	3	Understanding the Practical and computational aspects of optimization
2	Few applications based on nature inspired optimization techniques.	4	Understanding the applications based on nature 1 inspired optimization techniques.
	Total	42	

Text Books:

- 1. Optimization in operations research by Ronald L. Rardin.
- 2. K. Deb,"Optimization for Engineering DesignAlgorithms and Examples", Prentice-Hall of India Pvt. Ltd.

Reference Books:

- 1. Operation Research by Kanti Swarup, P. K. Gupta, Man Mohan.
- 2. Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics by Cavazzuti Marco